Προς το περιεχόμενο

Sami Amiris

Guru
  • Αναρτήσεις

    277
  • Μέλος από

  • Τελευταία επίσκεψη

  • Ημέρες που κέρδισε

    3

Ότι δημοσιεύτηκε από Sami Amiris

  1. Γ) ΕΙΔΙΚΟ ΟΝΟΜΑ Τώρα, συνεχίζουμε με το δεύτερο συνθετικό του διαστήματος. Τις περίεργες λέξεις "Καθαρή", "τρισελαττωμένη" κτλ. Πριν προχωρήσουμε, πρέπει να ξέρουμε ότι τα διαστήματα χωρίζονται σε δύο σημαντικές κατηγορίες: Κύρια: 1η, 4η, 5η, και Δευτερεύοντα: 2α, 3η, 6η, 7η. 1) Κύρια διαστήματα Τα κύρια διαστήματα είναι τα διαστήματα 1ης, 4ης και 5ης. Αυτά έχουν μία κεντρική κατάσταση, που λέγεται "καθαρή", που είναι ως εξής: 1η Καθαρή: 0 ημιτόνια απόσταση (ταυτοφωνία, ακριβώς η ίδια νότα δύο φορές), π.χ. C - C, D# - D# κτλ. 4η Καθαρή: 5 ημιτόνια απόσταση, π.χ. C - F, G# - C#, F - Bb, F# - B κτλ. και 5η Καθαρή: 7 ημιτόνια απόσταση, π.χ. C - G, D - A, B - F#, Eb - Bb κτλ. Παραδείγματα: Το διάστημα C - C είναι 1η (αφού το όνομα είναι το ίδιο και στις δύο νότες), και η απόσταση είναι 0 ημιτόνια, άρα είναι 1η Καθαρή. Το διάστημα C - F είναι 4η, και οι δύο νότες έχουν 5 ημιτόνια διαφορά: C (0) - C# (1) - D (2) - D# (3) - E (4) - F (5) Αφού είναι 4η και 5 ημιτόνια, είναι 4η Καθαρή. Το διάστημα C - G είναι 5η, και οι δύο νότες έχουν 7 ημιτόνια διαφορά: C (0) - C# (1) - D (2) - D# (3) - E (4) - F (5) - F# (6) - G (7) Αφού είναι 5η και 7 ημιτόνια, είναι 4η Καθαρή. Έτσι, αν έχετε διάστημα 1ης με 0 ημιτόνια απόσταση μεταξύ των νοτών, έχετε 1η Καθαρή, 4ης με 5 ημιτόνια απόσταση, έχετε 4η Καθαρή, και 5ης με 7 ημιτόνια απόσταση, έχετε 5η Καθαρή. Αν ένα διάστημα είναι κύριο αλλά η απόσταση σε ημιτόνια είναι μεγαλύτερη από την κεντρική κατάσταση (καθαρό διάστημα), τότε είναι αυξημένο, ενώ αν είναι μικρότερο από την κεντρική κατάσταση, είναι ελαττωμένο. Συγκεκριμένα: Αν η απόσταση είναι κατά: 1 ημιτόνιο μεγαλύτερη από την κεντρική κατάσταση (Καθαρό διάστημα), τότε το διάστημα θα λέγεται Αυξημένο, 2 ημιτόνια: δύο φορές αυξημένο ή δισαυξημένο, 3 ημιτόνια: τρεις φορές αυξημένο ή τρισαυξημένο, 4 ημιτόνια: τέσσερις φορές αυξημένο ή τετράκις αυξημένο, κτλ. Αντίστοιχα, όταν είναι κατά: 1 ημιτόνιο μικρότερη από την κεντρική κατάσταση (Καθαρό διάστημα), τότε θα λέγεται Ελαττωμένο, 2 ημιτόνια: δύο φορές ελαττωμένο ή δισελαττωμένο, 3 ημιτόνια: τρεις φορές ελαττωμένο ή τρισελαττωμένο, 4 ημιτόνια: τέσσερις φορές ελαττωμένο ή τετράκις ελαττωμένο, κτλ. Παραδείγματα: Όπως είδαμε, το διάστημα C - G είναι 5η Καθαρή. Αν ανεβάσουμε την ψηλή νότα G κατά 1 ημιτόνιο στο G#, οι δύο νότες απομακρύνονται η μία από την άλλη κατά 1 ημιτόνιο, αφού η ψηλή νότα ανεβαίνοντας κι άλλο, απομακρύνθηκε από τη χαμηλή νότα. Το C - G# είναι πάλι 5η, αλλά είναι απόσταση 7 + 1 = 8 ημιτονίων, άρα είναι 1 ημιτόνιο μεγαλύτερη από 5η Καθαρή που αντιστοιχεί στα 7 ημιτόνια, συνεπώς είναι 5η Αυξημένη. Όμοια, αν ξεκινήσουμε πάλι από το C - G και κατεβάσουμε τη χαμηλή νότα C κατά ένα ημιτόνιο στο Cb, τότε οι δύο νότες πάλι απομακρύνονται η μία από την άλλη κατά 1 ημιτόνιο, αφού η χαμηλή νότα κατεβαίνοντας κι άλλο, απομακρύνθηκε από τη ψηλή νότα. Το διάστημα Cb - G είναι πάλι 5η με απόσταση 7 + 1 = 8 ημιτόνια, άρα επίσης 5η αυξημένη. Τώρα, ξεκινάμε πάλι από το C - G, τη γνωστή 5η Καθαρή μας. Αν ανεβάσουμε τη χαμηλή νότα C κατά ένα ημιτόνιο στο C#, οι δύο νότες πλησιάζουν η μία την άλλη κατά 1 ημιτόνιο, αφού η χαμηλή νότα ανεβαίνοντας, έρχεται πιο κοντά στην ψηλή νότα. Το C# - G είναι πάλι 5η, αλλά η απόσταση είναι τώρα 6 ημιτόνια = 7 - 1, δηλαδή 1 ημιτόνιο μικρότερη από την 5η Καθαρή, δηλαδή 5η ελαττωμένη. Όμοια, αν ξεκινήσουμε πάλι από το C - G και χαμηλώσουμε την ψηλή νότα G κατά ένα ημιτόνιο στο Gb, πάλι πλησιάζουν οι νότες κατά 1 ημιτόνιο, οι δύο νότες πλησιάζουν η μία την άλλη κατά 1 ημιτόνιο, αφού η ψηλή νότα κατεβαίνοντας, έρχεται πιο κοντά στη χαμηλή νότα. Το διάστημα C - Gb είναι πάλι 5η με απόσταση 6 ημιτονίων, άρα 5η ελαττωμένη. Τώρα, ξεκινώντας πάλι από το C - G, την 5η Καθαρή μας, θέλουμε να δούμε τι είναι το διάστημα C# - G#. Εδώ ανεβαίνουν και οι δύο νότες κατά ένα ημιτόνιο, άρα η συνολική απόσταση δεν αλλάζει, αφού κινήθηκαν προς την ίδια κατεύθυνση με τον ίδιο αριθμό ημιτονίων. Άρα το C# - G# είναι 5η με 7 ημιτόνια απόσταση, άρα 5η Καθαρή. Όμοια ακριβώς αν κατεβούν και οι δύο νότες 1 ημιτόνιο, οπότε προκύπτει το διάστημα Cb - Gb, πάλι 5η Καθαρή. Ας δούμε τώρα το διάστημα C# - Gx. Εδώ, η χαμηλή ανέβηκε 1 ημιτόνιο, αλλά η ψηλή 2 ημιτόνια. Άρα η συνολική απόσταση μεγάλωσε κατά 1 ημιτόνιο, έτσι το διάστημα C# - Gx είναι 5η με 8 ημιτόνια απόσταση, άρα 5η Αυξημένη. Τέλος, τα διαστήματα Cb - G#, Cbb - G και C - Gx είναι όλα 5ες, αλλά η απόστασή τους είναι 9 ημιτόνια = 7 + 2, άρα είναι 5ες δισαυξημένες. Αντίστοιχα, τα διαστήματα C# - Gb, C - Gbb και Cx - G είναι επίσης 5ες, αλλά οι αποστάσεις σε ημιτόνια είναι 5 ημιτόνια = 7 - 2 = 5η Καθαρή - 2 = 5η δισελαττωμένη. Άσκηση: Τοποθετήστε ότι σημεία αλλοιώσεως θέλετε στις νότες C και G, και βρείτε τι διαστήματα σχηματίζουν (όχι βέβαια αυτά που καλύψαμε παραπάνω!). Μην παραλείψτε τις Cx - Gbb και Cbb - Gx! (Προφανώς όλα θα είναι 5ες, μένει να βρείτε τι 5ες.) Όμοια, για τις νότες C και F, που σχηματίζουν 4ες. Μην παραλείψτε τις Cx - Fbb και Cbb - Fx! Το διάστημα B - F είναι 5η με απόσταση 6 ημιτόνια = 7 - 1 = 5η Καθαρή - 1 = 5η ελαττωμένη. Προσοχή, γιατί είναι η μόνη 5η που αποτελείται από φυσικές νότες και είναι ελαττωμένη, όλες οι άλλες 5ες από φυσικές νότες είναι Καθαρές! Αντίστοιχα, το διάστημα F - B είναι 4η με απόσταση επίσης 6 ημιτόνια! Εδώ όμως, 6 ημιτόνια = 5 +1 = 4η Καθαρή + 1 = 4η Αυξημένη. Και πάλι είναι η μόνη 4η από φυσικές νότες που είναι αυξημένη, όλες οι άλλες 4ες από φυσικές νότες είναι καθαρές! Αυτό που βλέπουμε εδώ είναι μία 5η και μία 4η με ακριβώς την ίδια απόσταση σε ημιτόνια, 6 ημιτόνια. Η απόσταση αυτή λέγεται αλλιώς και τρίτονο, μια και αν βάλουμε 3 τόνους στη σειρά έχουμε 3x2 = 6 ημιτόνια. Άρα τρίτονο = 5η ελαττωμένη ή 4η αυξημένη. Ας δούμε τώρα το περίεργο διάστημα 1ης. Η 1η είναι Καθαρή ακριβώς όταν η απόσταση είναι 0 ημιτόνια ανάμεσα στις δύο νότες του διαστήματος. Άρα πρέπει να είναι ακριβώς η ίδια νότα δύο φορές, π.χ. C - C, Dx - Dx, κτλ. Σε αυτήν την περίπτωση που έχουμε την ίδια νότα δύο φορές, το λέμε ταυτοφωνία. Άρα, 1η Καθαρή = ταυτοφωνία. Αν η δεύτερη νότα είναι ψηλότερη από την πρώτη, έχουμε 1η αυξημένη, δισαυξημένη κτλ. Π.χ.: C - C# = Cb - C = C# - Cx = 1η αυξημένη, C - Cx = Cb - C# = Cbb - C = 1η δισαυξημένη, κτλ. Το παράδοξο είναι σε περιπτώσεις όπως αυτή: C - Cb. Εδώ, η δεύτερη νότα που υποτίθεται ότι είναι η ψηλή από τις δύο, στην πραγματικότητα είναι χαμηλότερη της πρώτης κατά ένα ημιτόνιο! Η απόσταση σε ημιτόνια είναι -1 = 0 - 1 = 1η Καθαρή - 1 = 1η ελαττωμένη! Έτσι, έχουμε το διάστημα 1ης ελαττωμένης ΑΝΙΟΝ ( όπως όλα τα υπόλοιπα διαστήματα που κοιτάμε, από χαμηλή προς ψηλή νότα, δηλαδή προς τα πάνω), αλλά οι νότες πάνε ανάποδα, προς τα κάτω! Είναι από τα περίεργα που επιτρέπει το σύστημα... Και φυσικά υπάρχουν και άλλα τέτοια, όπως π.χ. C# - Cb = 1η δισελαττωμένη, έναν τόνο χαμηλότερα η 2η νότα από την 1η, ή ακόμη χειρότερα Cx - Cbb = 1η τετράκις ελαττωμένη, 2 τόνοι χαμηλότερα η δεύτερη "Ψηλή" από την 1η "Χαμηλή"!!!! Είπαμε, το σύστημα επιτρέπει τέτοια ευτράπελα, και πρέπει να τα ξέρουμε. Το να δει κανείς π.χ. το πολύ απλό κατέβασμα C# - C και να λέει ότι η μελωδία ΑΝΕΒΑΙΝΕΙ μία 1η ελαττωμένη, είναι σαν να λέει ότι το βάρος του αυξήθηκε κατά -10 κιλά! Κοινώς, αδυνάτισε 10 κιλά. Αλλά το ξαναλέμε, το σύστημα το επιτρέπει! Έχουσι γνώσιν οι φύλακες λοιπόν. Παραδείγματα: 5ες Καθαρές: C - G, D - A, E - B, F - C, G - D, A - E, B - F#, κτλ. 4ες Καθαρές: C - F, D - G, E - A, G - C, A - D, B - E, F - Bb, κτλ. 1ες Καθαρές: C - C, D - D, βασικά οτιδήποτε με τον εαυτό του! 5ες ελαττωμένες: B - F, C - Gb, D - Ab, D# - A, E - Bb κτλ. = Τρίτονα. 4ες αυξημένες: F - B, C - F#, D - G#, D# - Gx, E - A# κτλ. = Τρίτονα πάλι! Άσκηση: Επιβεβαιώστε τα παραπάνω διαστήματα. Φτιάξτε δικές σας 4ες, 5ες και 1ες, δώστε τους ό,τι σημεία αλλοιώσεως θέλετε, και βρείτε τα διαστήματα.
  2. ΔΙΑΣΤΗΜΑΤΑ 1 Α) ΓΕΝΙΚΑ Στο παρόν άρθρο θα μελετήσουμε τα διαστήματα, και θα δούμε κάποιες μεθόδους υπολογισμού διαστημάτων. Δεν είναι αυτή που προτιμά ο γράφων (για αυτήν θα πρέπει να έχετε δει την κατασκευή κλιμάκων και τα Διαστήματα 2), αλλά γίνεται χωρίς περαιτέρω γνώσεις, εκτός της ονοματολογίας, που έχετε ήδη διαβάσει και λύσει την άσκηση. [Αν δεν το έχετε ήδη κάνει, ο γράφων σας συνιστά ισχυρά να το κάνετε, αλλιώς υπάρχει αρκετά σοβαρή πιθανότητα να αντιμετωπίσετε πρόβλημα παρακάτω.] Κατ'αρχήν, τι είναι τα διαστήματα; Λοιπόν, τα διαστήματα είναι ένα μέτρο υπολογισμού αποστάσεων, πόσο απέχει μία νότα από την άλλη. Σωστά; Όχι. Το διάστημα είναι μέτρο απόστασης μεταξύ δύο συγκεκριμένων τρόπων γραφής των συγκεκριμένων νοτών!!! Τουτέστιν, αν αλλάξουμε τον τρόπο που γράφουμε τη νότα (χωρίς να της πειράξουμε το ύψος), το διάστημα αλλάζει, ενώ η απόσταση σε ημιτόνια φυσικά δεν αλλάζει. Αυτό είναι πολύ σημαντικό να το θυμόμαστε. Ένα παράδειγμα: Η απόσταση των πλήκτρων "C#/Db" και του ακριβώς ψηλότερού του "G#/Ab" σε ημιτόνια, είναι 7. Με άλλα λόγια, αν ξεκινήσουμε την αρίθμηση των πλήκτρων, βάζουμε 0 στο C# (ναι, 0. Απόσταση από το C# ψάχνουμε, και απέχει 0 ημιτόνια από τον εαυτό του!), 1 στο D, 2 sto D#/Eb, 3 στ Ε, 4 στο F, 5 στο F#/Gb, 6 στο G και άρα 7 στο G#/Ab πλήκτρο. Τα πήραμε με τη σειρά ξεκινώντας από το 0 και με κάθε πλήκτρο δεξιά προσθέτουμε 1 στην απόσταση, μέχρι να πιάσουμε τη νότα που θέλουμε. Απλή διαδικασία. [Στην κιθάρα ακόμη πιο εύκολο, μετράμε απλώς πόσα τάστα απέχει η μία από την άλλη στην ίδια χορδή.] Τώρα προσέξτε: Η απόσταση σε ημιτόνια είναι δεδομένη. Όχι όμως και το διάστημα! Διότι, όπως θα μάθουμε παρακάτω, αν πούμε τις νότες: C# και G#, το διάστημα είναι 5η Καθαρή. C# και Ab, το διάστημα είναι 6η ελαττωμένη. Db και G#, το διάστημα είναι 4η δισαυξημένη (δύο φορές αυξημένη), και Db και Ab, το διάστημα είναι πάλι 5η Καθαρή, όπως στην αρχή. Τρία ονόματα διαστημάτων για την ίδια απόσταση!!! Αν πάλι αποφασίσουμε να παίξουμε σε πιο δύσκολο επίπεδο, και πούμε τις νότες π.χ. Bx ή Εbbb για το C#/Db και Fx# ή Bbbb για το G#/Ab, τότε θα πάρουμε τα εξής μαργαριτάρια: C# - Fx# = 4η δισαυξημένη C# - Βbbb = 7η τρισελαττωμένη (τρεις φορές ελαττωμένη) Db - Fx# = 3η τρισαυξημένη (3 φορές αυξημένη) Db - Βbbb = 6η ελαττωμένη Bx - G# = 6η ελαττωμένη Βx - Ab = 7η τρισελαττωμένη Ebbb - G# = 3η τρισαυξημένη Ebbb - Ab = 4η δισαυξημένη Bx - Fx# = 5η καθαρή Εbbb - Bbbb = 5η καθαρή και το χρυσό βατόμουρο απονέμεται στα: Βx -Βbbb = 8η πεντάκις ελαττωμένη (!!!) - ναι, 5 φορές ελαττωμένη Εbbb - Fx# = 2α πεντάκις αυξημένη (!!!) - και πάλι ναι, 5 φορές αυξημένη. Και όλα αυτά τα υπέροχα για την ίδια απόσταση 7 ημιτονίων!!! Άρα, τα διαστήματα δεν μετρούν αποστάσεις των πλήκτρων. Αυτό το κάνουν οι αριθμοί ημιτονίων ανάμεσά τους. Τα διαστήματα μετρούν αποστάσεις των τρόπων γραφής που επιλέξαμε για τα συγκεκριμένα πλήκτρα! Για παράδειγμα, από τα παραπάνω προκύπτει ότι στην απόσταση 7 ημιτονίων αντιστοιχούν τα εξής διαστήματα, από μικρό σε μεγάλο νούμερο: 2α πεντάκις αυξημένη 3η τρισαυξημένη 4η δισαυξημένη 5η καθαρή 6η ελαττωμένη 7η τρισελαττωμένη 8η πεντάκις ελαττωμένη Εδώ σταματάει; Όχι βέβαια! Μόνο αν εμείς αποφασίσουμε ότι αρκετά είδαμε και φτάνει. Αλλιώς, όπως ξέρουμε από την ονοματολογία, μπορούμε να δώσουμε ακόμη πιο "κακά" ονόματα στις νότες, και να γίνει το πράγμα ακόμη πιο τραβηγμένο, όσο τραβηγμένο θέλουμε. Διότι, ανάλογα με τι ονόματα δώσουμε στις νότες, αντίστοιχο διάστημα θα πάρουμε. Ας αναφέρουμε για να τρομάξετε αρκούντως ότι μπορούμε να ονομάσουμε "Fbbbb" το πλήκτρο C#/Db, και "Εxx" το πλήκτρο G#/Αb, και ο συνδυασμό πλήκτρων C# - G# που είναι μια ομορφούλα 5η καθαρή, να μεταμορφωθεί στο τέρας Fbbbb - Exx, που είναι διάστημα 2ας οκτάκις ελαττωμένο ΠΡΟΣ ΤΑ ΚΑΤΩ!!! Μάλιστα, διάστημα προς τα κάτω, το οποίο όταν υπολογίσει κανείς τι βγαίνει, στην πραγματικότητα βγαίνουν 7 ημιτόνια προς τα πάνω!!! Τελειώσαμε με τα σημεία και τέρατα; ΟΧΙ! Διότι, όπως είδαμε στην ονοματολογία, υπάρχουν και χειρότερες ονομασίες για τα πλήκτρα που επιλέξαμε, και άρα, αντιστοίχως χειρότερα διαστήματα! Πραγματικά όμως δεν υπάρχει κανένας αντικειμενικός λόγος να πάμε εκεί, πέραν ίσως της περιέργειας να δούμε το σύστημα στα χειρότερά του. Τώρα λοιπόν που βλέπετε την αξία - ή καλύτερα, την απαξία! - της ονοματολογίας των νοτών, ας μπούμε στο ψητό. Με τα διαστήματα σχετίζονται δύο προβλήματα. Πρόβλημα 1: Μας δείχνουν δύο συγκεκριμένες νότες και πρέπει να βρούμε το διάστημα. Πρόβλημα 2: Μας δίνουν μία συγκεκριμένη νότα, ένα διάστημα και μία κατεύθυνση (πάνω ή κάτω) και πρέπει να βρούμε την άλλη νότα. Τα προβλήματα θα τα λύσουμε οριστικά στο τέλος της παρούσας παρουσίασης. Όμως θα ξεκινήσουμε τη μελέτη μας σκεπτόμενοι γύρω από το πρώτο πρόβλημα, δηλαδή το να μας δώσουν δύο νότες με συγκεκριμένη γραφή και να βρούμε το διάστημα. Όταν μας δώσουν δύο συγκεκριμένες νότες, αυτό που θέλουμε εν πρώτοις να ξέρουμε είναι ποιά είναι η χαμηλή, ποιά η ψηλή και πόσες οκτάβες χωράνε ανάμεσά τους. Ας υποθέσουμε λοιπόν προς το παρόν ότι: η πρώτη νότα που μας λένε είναι η χαμηλή Χ, η δεύτερη νότα η ψηλή Ψ και οι δύο χωράνε μέσα σε μία οκτάβα. Μέχρι εδώ καλά. Το διάστημα αποτελείται, όπως είδαμε, από δύο λέξεις. Ένα αριθμητικό και μία περίεργη λέξη ή συνδυασμό λέξεων. Πρώτη μας δουλειά να βγάλουμε το αριθμητικό. Β) ΤΟ ΑΡΙΘΜΗΤΙΚΟ Αυτό είναι μία λέξη του τύπου "πρώτη", "δευτέρα", "τρίτη" κτλ., όπως οι ταχύτητες στο αυτοκίνητο. Για να το βγάλουμε λοιπόν το αριθμητικό, κάνουμε τα εξής: παίρνουμε σκέτα τα ονόματα των X και Ψ, χωρίς τις όποιες αλλοιώσεις (διέσεις, υφέσεις) μπορεί να έχουν. Σκέτα τα ονόματά τους λοιπόν. Μέτράμε πόσα ονόματα από τη γνωστή σειρά ..., C, D, E, F, G, A, B, C, D, E, F, G, A, B, C, ... λέμε για να φτάσουμε από τη Χ μέχρι την Ψ, μετρώντας με 1 τη Χ και ανεβαίνοντας κατά 1 μέχρι να φτάσουμε στην Ψ. Εννοείται στην παρούσα φάση ότι η Χ θα είναι αριστερά, η Ψ δεξιά, και θα είναι όσο πιο κοντά γίνεται η μία στην άλλη. Βγάζουμε έτσι έναν αριθμό, το αριθμητικό μέρος του διαστήματος. Παραδείγματα: Χ = C, Ψ = Ε. Διάστημα: C - E. Η σειρά των ονομάτων: C D E, 3 ονόματα. Άρα το διάστημά μας είναι 3η. X = D, Ψ = A. Διάστημα: D - A. Η σειρά των ονομάτων: D E F G A, 5 ονόματα. Άρα το διάστημά μας είναι 5η. X = F, Ψ = Ε. Διάστημα: F - E. Η σειρά των ονομάτων: F G A B C D E, 7 ονόματα. Άρα το διάστημά μας είναι 7η. X = E#, Ψ = Db. Διάστημα: E# - Db. Πετάμε τις αλλοιώσεις, άρα έχουμε E - D. Και κάνουμε τα ίδια με πριν: Η σειρά των ονομάτων: E F G A B C D, 7 ονόματα. Άρα το διάστημά μας είναι πάλι 7η. Χ = B#, Ψ = Bb. Διάστημα: B# - Bb. Πετάμε τις αλλοιώσεις, άρα έχουμε B - B. Βλέπουμε ότι το όνομα είναι ακριβώς το ίδιο. Άρα, είτε θα θεωρήσουμε ότι είναι ακριβώς η ίδια νότα, οπότε έχουμε εξ'ορισμού διάστημα 1ης, είτε θα είναι μία οκτάβα απόσταση, οπότε κάνουμε ότι πάντοτε: Η σειρά των ονομάτων: B C D E F G A B, 8 ονόματα. Άρα το διάστημά μας είναι 8η. Χ = Fx, Ψ = Βbb. Διάστημα: Fx - Bbb. Πετάμε τις αλλοιώσεις, άρα έχουμε F - B. Η σειρά των ονομάτων: F G A B, 4 ονόματα. Άρα το διάστημά μας είναι 4η. Τώρα πια είστε έτοιμοι να βρείτε αριθμητικά για οποιεσδήποτε δύο νότες μέσα σε μία οκτάβα. Άσκηση: Βρείτε τα αριθμητικά στα παρακάτω ζεύγη: C - C, C - D, C - E, C - F, C - G, C - A, C - B D - D, D - E, D - F, D - G, D - A, D - B, D - C E - E, E - F, E - G, E - A, E - B, E - C, E - D F - F, F - G, F - A, F - B, F - C, F - D, F - E G - G, G - A, G - B, G - C, G - D, G - E, G - F A - A, A - B, A - C, A - D, A - E, A - F, A - G B - B, B - C, B - D, B - E, B - F, B - G, B - A Θεωρείστε ότι όλα τα ζεύγη είναι ανιόντα και μικρότερα της οκτάβας, δηλαδή η νότα του πρώτου ονόματος είναι χαμηλότερη από τη νότα του δευτέρου ονόματος, και απέχουν απόσταση λιγότερη από οκτάβα (12 ημιτόνια).
  3. Ακολουθούν τα διαστήματα 1. Είναι το πρώτο από δύο μέρη, που το δεύτερο μέρος θα έρθει μετά την κατασκευή και μελέτη των μειζόνων κλιμάκων. Βασίζεται στην ονοματολογία των νοτών, που είναι και άρθρο στο About Music. Διαβάστε οπωσδήποτε πρώτα την ονοματολογία και κάνετε και την άσκηση πριν ξεκινήσετε τα διαστήματα, για να μην αντιμετωπίσετε δυσκολίες.
  4. Όχι μόνο δεν έχουν οι φωνές την ίδια έκταση (εξου και οι όροι σοπράνο, μέτζο σοπράνο, κοντράλτο, κόντρα τενόρος, τενόρος, βαρύτονος, μπάσος, κόντρα μπάσος με υποδιαιρέσεις και ενδιάμεσες καταστάσεις), αλλά επίσης και η ίδια φωνή ανά μέρα μπορεί να μην έχει την ίδια έκταση, ειδικότερα για κάποιες γυναίκες που όταν έχουν τα γνωστά μηνιαία θέματα, αλλάζει η έκτασή τους! Μου έχει τύχει να χρειαστεί να αλλάξω τονικότητα σε κομμάτια σε vocal - piano duo επί σκηνής, επειδή δεν μπορούσε η κοπέλα να τα πει λόγω τέτοιας κατάστασης. Αυτό φυσικά δεν σημαίνει ότι δεν πρέπει να βρεις σοβαρό δάσκαλο φωνητικής και να αναπτύξεις το όργανο της φωνής σου, αν είσαι σοβαρός με το θέμα. Επιβάλλεται. Απλά ως σχόλιο: τα jazz standards τραγουδιούνται και παίζονται από οποιαδήποτε τονικότητα. Για τα rock κομμάτια όμως έχω κάποιες επιφυλάξεις, διότι είναι ενορχηστρωμένα με κάποιο συγκεκριμένο τρόπο και μερικές φορές δεν λειτουργεί το ίδιο καλά σε πολύ απομακρυσμένες τονικότητες. Το καλύτερο είναι να διαλέξεις ρεπερτόριο που σου έρχεται φυσικό στην έκταση, και από τα υπόλοιπα κάνε τα τρανσπόρτα σου και δες ποια ακούγονται καλά και ποια όχι, και διάλεξε τα πρώτα. Καλή τύχη!
  5. Θα τα αναρτήσω αυτά σαν άρθρα στο αντίστοιχο section, μετά από υπόδειξη του moderator...
  6. Καλημέρα και ευχαριστώ. Η λέξη "αναστήλωση" που χρησιμοποιείς είναι ακριβής, δεδομένου ότι μάλλον προς κατεδάφιση πήγαινε αυτό παρά σε εγχείρηση... Για αυτό που ρωτάς, δυστυχώς δεν έκατσα να γράψω τις απαντήσεις, ήδη το να προγραμματίσω το test στο lilypond ήταν κάπως! Μπορώ όμως αν θες να σου το διορθώσω, αν το σκανάρεις και μου το στείλεις. Ή φυσικά μπορείς να μου στείλεις συγκεκριμένες απορίες είτε δημόσια είτε σε p.m. να σου απαντήσω. Από την άλλη, αν δω ότι υπάρχει γενικότερο ενδιαφέρον για φυλλάδιο απαντήσεων, μπορεί εν τέλει να βάλω το κεφάλι κάτω να το κάνω...
  7. Όχι απλώς "αδύνατε", αλλά άνθρωπος γραμματόσημο - χωρά κάτω απ'την πόρτα! Thanx btw...
  8. Άσε Θοδωρή, μετά την εγχείριση έχω αδυνατίσει. Πλέον δεν πιάνω μία! Πάνε αυτά που ήξερες...
  9. Και φυσικά, ευχαριστώ όλους σας για τα καλά σας λόγια. Ελπίζω πραγματικά να σας είναι χρήσιμα όλα αυτά. Μία προειδοποίηση: μην περάσετε στο "ντούκου" την ονοματολογία, διότι είναι πολύ σημαντικό να τα ξέρετε αυτά τα πράγματα. Μπορεί να φαίνονται - και να είναι, δε διαφωνώ - τραβηγμένα, αλλά είναι η βάση για να κατανοήσετε βαθιά την κατασκευή κλιμάκων, διαστημάτων και μετά της αρμονίας. Μία άσκηση πάνω στην ονοματολογία, πριν πάμε παρακάτω. Και προτρέπω όλους όσους το διάβασαν να την κάνουν: Πάρτε κάθε ένα από τα 12 πλήκτρο του πιάνου μέσα στην οκτάβα (ή τάστο της κιθάρας στα πλαίσια μίας οκτάβας, αν προτιμάτε), και δώστε του όλα τα ονόματα, C, D, E, F, G, A και B, με την κατάλληλη προσθήκη διέσεων ή υφέσεων.Οι διέσεις ή υφέσεις να μην ξεπεράσουν τις 12 γιατί μετά έχετε επαναλήψεις. Παράδειγμα: Η νότα C του πιάνου, γράφεται ως εξής: C, Cxxxxxx, Cbbbbbbbbbbbb, Dbb, Dxxxxx, Ebbbb, Exxxx, Fbbbbb, Fxxx#, Gxx#, Gbbbbbbb, Ax#, Abbbbbbbbb, B#, Bbbbbbbbbbbb τα bold είναι τα πιο χρήσιμα, τα άλλα μουσειακό είδος, αλλά αν τα δείτε δεν θα τρομάξετε. Συνεχίστε εσείς με τις υπόλοιπες 11. Μην το αμελήσετε, θα σας χρειαστεί παρακάτω.
  10. Ευχαριστώ Μάκη. Χαίρομαι που γνωριζόμαστε έστω και από δω. Έχουμε και πολλούς κοινούς γνωστούς, και μου άρεσε πάντοτε η δουλειά σου, είσαι υπέροχος μουσικός. Τις πεντατονικές σκέφτομαι να τις αναπτύξω σε ξεχωριστό post, μια και είναι πάρα πολλές, και οι περισσότερες από αυτές άγνωστες στο ευρύ κοινό. Νομίζω ότι θα ήταν καλό να υπάρχει μία κάπως συστηματική προσέγγιση στο να βγάζει κανείς πεντατονικές, γιατί πραγματικά είναι πολύ σημαντικές για τη μουσική. Και δεν είναι δύσκολο στην τελική. Θα είναι ένα από τα επόμενα posts.
  11. Συνεχίζω με μια από τις δύο βάσεις που χρειάζεται κανείς για να κατανοήσει τα διαστήματα: Η ονοματολογία των νοτών. Κοινώς, πως ονομάζονται και γιατί. Δεν είναι τόσο απλό όσο φαίνεται!!! Πόσες νότες έχουμε στη χρωματική κλίμακα; Απάντηση: 12. Πόσα ονόματα έχουμε για νότες; Απάντηση: Η πρώτη απάντηση που παίρνω συνήθως είναι πάλι "12". Μετά όμως το ξανασκέφτονται και μου λένε "15". Το κακό όμως είναι ότι αν μου έλεγαν μια απάντηση, θα έπρεπε να ήταν μία από τις εξής δύο: 7, ή άπειρα! Ναι, καλά διαβάσατε. Ας δικαιολογήσουμε τις δύο απαντήσεις. Καταρχήν, γιατί 7; Για τον προφανή λόγο: C D E F G A B, ή Ντο Ρε Μι Φα Σολ Λα Σι αντίστοιχα αν προτιμάτε ελληνιστί. Αυτά τα ονόματα αντιστοιχούν ακριβώς στα άσπρα πλήκτρα του πιάνου, σε ένα σύνολο από νότες που λέγεται "φυσική κλίμακα" (αν και το μόνο φυσικό που έχει είναι ότι παίζεται ευκολότερα από αρχάριο από τις άλλες), "Ντο Μείζων" κτλ. Αφού τα άσπρα πλήκτρα του πιάνου έχουν αυτά τα ονόματα, τα μαύρα πλήκτρα του πιάνου ποια ονόματα έχουν; Η στάνταρ απάντηση είναι "διέσεις/υφέσεις". Έτσι, το μαύρο πλήκτρο που βρίσκεται ακριβώς δεξιά του C θα λέγεται C#, ενώ επειδή βρίσκεται ακριβώς αριστερά του D θα λέγεται ταυτόχρονα και "Db". Διπλή ονομασία λοιπόν. Προσοχή: Τα ονόματα C# και Db δεν είναι προφανώς τα ίδια, αλλά συμπίπτουν σαν πλήκτρα στο πιάνο. Σε όργανα που μπορούν να παίζουν μικροδιαστήματα, όπως π.χ. βιολιά, τρομπόνια κτλ, δεν συμπίπτουν απαραίτητα ως τονικά ύψη. Αυτό έχει να κάνει με ιδιότητες προσαγωγέων, το αφήνουμε ασχολίαστο. Πάντως, επειδή ακριβώς συμπίπτουν στο πιάνο, θα ονομάζονται "εναρμόνιες". Άρα: Αν δύο ονόματα νοτών αντιστοιχούν στο ίδιο πλήκτρο του πιάνου, θα λέγονται "εναρμόνια". Ή θα λέμε ότι "οι νότες τάδε και τάδε είναι εναρμόνιες" ακριβώς όταν αντιστοιχούν στο ίδιο πλήκτρο του πιάνου (ή τάστο της κιθάρας, ας μην τα χαλάσουμε για αυτό!) Άρα, τα μαύρα πλήκτρα, με βάση τα άσπρα πλήκτρα που βρίσκονται δίπλα τους, θα λέγονται: "C#/Db", "D#/Eb" για τα δύο μαύρα ανάμεσα στα C και E, και "F#/Gb", "G#/Ab". "A#/Bb" για τα τρία μαύρα ανάμεσα στα F και B. Όλες οι διπλές ονομασίες είναι εναρμόνιες μεταξύ τους. Όλα μαζί λοιπόν: 1 όνομα ανά πλήκτρο για τα άσπρα πλήκτρα x 7 πλήκτρα στην οκτάβα = 7x1 = 7 ονόματα, και 2 ονόματα ανά πλήκτρο για τα μαύρα πλήκτρα x 5 μαύρα πλήκτρα στην οκτάβα= 2x5 = 10 ονόματα, σύνολο 7+10=17 ονόματα. Στη σειρά: C [C#/Db] D [D#/Eb] E F [F#/Gb] G [G#/Ab] A [A#/Bb] B || C κτλ. (επανάληψη στην οκτάβα) όπου σκέτα τα άσπρα πλήκτρα και [...] τα μαύρα πλήκτρα. Όλα ωραία και καλά λοιπόν!!! Όχι. Δυστυχώς το παραπάνω είναι ελλιπές. Για να καταλάβουμε γιατί, πρέπει να δούμε λίγο πιο βαθιά τα πράγματα. Τι είναι η δίεση και η ύφεση; "Μα, σημείο αλλοιώσεως", θα μου πει κανείς. Δηλαδή; "Μπαίνει δίπλα στη νότα για να μας πει να την παίξουμε ένα ημιτόνιο ψηλότερα (δίεση) ή χαμηλότερα (ύφεση) από την κανονική θέση της." Σωστό. Η δίεση και η ύφεση μας λένε να παίξουμε ένα ημιτόνιο ψηλότερα ή χαμηλότερα από τη νότα στην οποία τοποθετούνται, και μάλιστα χωρίς να αλλάξουμε το όνομα. Αυτό σημαίνει ότι κάνουμε έναν πολύ εύκολο υπολογισμό: Νότα με γνωστό όνομα (από τις ""φυσικές") + Δίεση = η νότα ακριβώς ένα ημιτόνιο πάνω. Π.χ. Ντο (γνωστό όνομα) + δίεση = η νότα ακριβώς ένα ημιτόνιο πάνω από την Ντο. Πως θα την αποκαλούμε; Ντο Δίεση (C#). Μας εμποδίζει κανείς να κάνουμε το ίδιο με όλα τα ονόματα που ξέρουμε; Όχι βέβαια. Άρα, μπορούμε να βάλουμε δίεση και στο Μι. Τότε ποιά νότα θα είναι το Μι#; Θα συμπίπτει με το πλήκτρο Φα! Όμοια, μπορώ να βάλω δίεση στο Σι, και πέφτει πάνω στο Ντο. Με υφέσεις, μπορώ να βάλω ύφεση στο Φα, οπότε πέφτω στο Μι, ή στο Ντο, οπότε πέφτω στο Σι. Καινούριες εναρμόνιες λοιπόν. Έχουν νόημα όλα αυτά; Έχει νόημα να συζητάμε για E#, B#, Fb, Cb; Ναι, έχει. Από τη στιγμή που έχουμε ένα σύστημα που μπορεί να τις παράγει, είναι καλό να ξέρουμε το πως γίνεται. Και βέβαια, έχουν σημασία για τις κλίμακες. Ο ανανεωμένος μας χάρτης λοιπόν έχει τώρα τις εξής ονομασίες: B#/C [C#/Db] D [D#/Eb] E/Fb E#/F [F#/Gb] G [G#/Ab] A [A#/Bb] B/Cb || B#/C κτλ. Σύνολο: 21 ονόματα: 7 σκέτα (C, D, E, F, G, A, B), 7 με δίεση (C#, D#, E#, F#, G#, A#, B#), και 7 με ύφεση (Cb, Db, Eb, Fb, Gb, Ab, Bb). Οι ακριβείς τους εναρμόνιες σχέσεις φαίνονται στην παραπάνω σειρά. Τελειώσαμε λοιπόν, έτσι; Όχι δυστυχώς. Διότι, κανείς δεν μας εμποδίζει να βάλουμε σημείο αλλοιώσεως σε νότα που ήδη έχει σημείο αλλοιώσεως. Δηλαδή, μπορούμε κάλιστα να βάλουμε δίεση σε νότα που ήδη έχει δίεση ή ύφεση, και ύφεση σε νότα που έχει ήδη ύφεση ή δίεση. Έτσι, π.χ. Αν βάλω δίεση στη νότα C#, θα πάρω τη νότα (C#)#, δηλαδή τη νότα ακριβώς ένα ημιτόνιο πάνω από την C#. Αυτή πέφτει ακριβώς στο πλήκτρο D! Άρα, τo πλήκτρο D μπορώ να το ονομάσω και (C#)#. Στην πράξη, δεν γράφουμε (C#)#. Καταρχάς βγαίνει η παρένθεση, και μετά αντί για ## σημειώνουμε x, οπότε: (C#)# = C## = Cx, όπου x=##. Λέγεται διπλή δίεση. Άρα η νότα Cx = C## λέγεται "Ντο διπλή δίεση". Και βέβαια, οι νότες D και Cx είναι εναρμόνιες. Όμοια με υφέσεις. Μπορώ να βάλω π.χ. ύφεση στη νότα Eb, και να πάω στη (Eb)b, η οποία είναι η νότα ένα ημιτόνιο κάτω από τη Eb, και συμπίπτει πάλι με το πλήκτρο D! Πάλι οι παρενθέσεις φεύγουν - δεν υπάρχει όμως αυτή τη φορά σύμβολο για τις δύο υφέσεις όπως το x για τις διπλές διέσεις - και έτσι έχουμε ότι οι νότες D και Ebb ("Μι διπλή ύφεση") είναι εναρμόνιες. Άρα οι νότες Cx, D και Ebb είναι όλες εναρμόνιες, και αντιστοιχούν στο D του πιάνου. Μπορούμε να βάλουμε δίεση σε νότα με ύφεση; Ναι, αλλά η δίεση με την ύφεση αλληλοεξουδετερώνονται. Π.χ. η νότα (C#)b είναι η νότα ένα ημιτόνιο κάτω από τη C#, που είναι η νότα ένα ημιτόνιο πάνω από τη C, δηλαδή στο τέλος η ίδια η C. Όμοια, αν έχουμε ύφεση σε νότα με διπλή δίεση, μένει απλή δίεση. Ας έχουμε στο μυαλό μας τη δίεση σαν "+1" και την ύφεση σαν "-1". Τότε, η νότα (Cb)x θα είναι -1+2 = +1, δηλαδή C#. Είναι πραγματικά παιχνιδάκι. Με βάση αυτό το σκεπτικό, έχουμε τώρα 35 ονόματα: 7 φυσικά, 7 με δίεση, 7 με ύφεση, 7 με διπλή δίεση, και 7 με διπλή ύφεση. Οι ακριβείς τους θέσεις και εναρμόνιες σχέσεις είναι οι εξής: B#/C/Dbb [bx/C#/Db] Cx/D/Ebb [D#/Eb/Fbb] Dx/E/Fb E#/F/Gbb [Ex/F#/Gb] Fx/G/Abb [G#/Ab] Gx/A/Bbb [A#/Bb/Cbb] Ax/B/Cb || B#/C/Dbb κτλ. Άρα, όλα τα πλήκτρα έχουν από 3 ονομασίες το καθένα, εκτός από το G#/Ab που έχει μόνο δύο! Τελειώσαμε πια, έτσι; Δυστυχώς όχι. Όπως είπαμε παραπάνω, "κανείς δεν μας εμποδίζει να βάλουμε σημείο αλλοιώσεως σε νότα που ήδη έχει σημείο αλλοιώσεως". Αυτό σημαίνει ότι μπορούμε να βάλουμε διέσεις πάνω σε νότες με διπλές διέσεις, φτιάχνοντας τριπλές διέσεις - το ίδιο και με υφέσεις. Μετά, καινούριες διέσεις πάνω στις τριπλές, φτιάχνοντας τετραπλές διέσεις κτλ., και πάλι το ίδιο με τις υφέσεις. Που σταματάει αυτό; ΠΟΥΘΕΝΑ. Συνεχίζεται επ'άπειρον! Μάλιστα, μερικά ενδιαφέροντα στοιχεία: Κάθε 12 διέσεις έχω την ίδια νότα μια οκτάβα ψηλότερα. Οπότε σαν ονόματα συμπίπτουν, αλλά όχι ως πλήκτρα!!! Όμοια για υφέσεις, κάθε 12 από δαύτες έχουμε την ίδια νότα μια οκτάβα χαμηλότερα.Μπορώ να προσθέτω όσες διέσεις θέλω σε όσες διέσεις ή υφέσεις θέλω. Για να βγάλω άκρη, θεωρώ τις διέσεις σαν +1, τις υφέσεις σαν -1, βγάζω το αλγεβρικό τους άθροισμα, μετρώ από το στάνταρ πλήκτρο που ξέρω το αρχικό του όνομα, και τέλος. Παράδειγμα: Θέλω το πλήκτρο 4 ημιτόνια κάτω από το Cxxxx. Δηλαδή θέλω το (Cxxxx)bbbb. Θεωρώ ότι x=##=+2, άρα το Cxxxx είναι 4x2 = 8 ημιτόνια πάνω από το C. Αντίστοιχα, bbbb = 4 x (-1) = -4. Σύνολο: 8-4 = 4, άρα (Cxxxx)bbbb = Cxx, το οποίο είναι εναρμόνιο με το E! Είναι καλό να κάνετε εξάσκηση σε αυτά τα χαζά και μερικώς ανύπαρκτα πράγματα, για ένα και μόνο λόγο: δεν πρόκειται ποτέ να μασήσετε σε παρτιτούρα, πάντα θα μπορείτε να καταλάβετε τι πρέπει να παίξετε. Επίσης, θα έχετε μια πολύ σοβαρή βάση για να καταλάβετε τα διαστήματα, και αυτό είναι πραγματικά η βάση για τη μουσική σας ανάπτυξη. Διότι, το πρόβλημα που έχουν όλοι με τα διαστήματα είναι "γιατί να το λέω 4η ελαττωμένη αφού είναι το ίδιο με την 3η Μεγάλη;", και η απάντηση είναι ότι ΔΕΝ είναι το ίδιο. Αντιστοιχεί στα ίδια νότες, αλλά το τονικό περιβάλλον είναι σαφώς διαφορετικό, και για αυτό δεν θα ακουστεί καν το ίδιο. Αυτά παρακάτω... Ένα σχόλιο: Δεν υπάρχει κύκλος 4ης/5ης. Υπάρχει ΑΠΕΙΡΗ ΣΠΕΙΡΑ 4ης/5ης, την οποία κόβουμε σε συγκεκριμένα επιθυμητά σημεία, τα ενώνουμε και τα κάνουμε κύκλο. Σκεφθείτε το αυτό, δεν είναι δύσκολο. Εν τέλει λοιπόν, τι είναι τα σημεία αλλοιώσεως; Λοιπόν, φανταστείτε μία μηχανή που παίρνει μια είσοδο και δίνει μια έξοδο. Η δίεση είναι μηχανή που παίρνει για είσοδο ένα όνομα, και δίνει για έξοδο ένα όνομα ένα ημιτόνιο ψηλότερα από αυτό που πήρε, χωρίς να αλλάξει το όνομα της νότας που περιέχεται μέσα. Όμοια η ύφεση, και όλα τα σύμπλοκά τους. Υπό αυτήν την έννοια λοιπόν, τα σημεία αλλοιώσεως είναι συναρτήσεις. Με την έννοια του: #(Νότα) = η νότα ένα ημιτόνιο πάνω από τη "Νότα" με το ίδιο όνομα, και θα συμβολίζεται "Νότα#" π.χ. #© = η νότα ένα ημιτόνιο πάνω από το C, με το ίδιο όνομα = C# Στην πραγματικότητα λοιπόν, καθαρά ονόματα έχουμε μόνον τα 7 που ξέρουμε. Όλα τα άλλα είναι παράγωγα συναρτήσεων! Και η θλιβερή διαπίστωση της ημέρας: Αν οι 5 μαύρες νότες είχαν συγκεκριμένα ονόματα, όπως και οι C, D, E, F, G, A, B που ξέρουμε, π.χ. H, I, L, K, J ή ότι άλλο θέλετε, όλη η θεωρία θα ήταν απλούστερη, και πολλά ευτράπελα απλώς δεν θα υπήρχαν. Δυστυχώς, είμαστε καταδικασμένοι να ζούμε σε ένα χρωματικό σύμπαν με μόνον 7 ονόματα, και αυτό έχει τις ολέθριες συνέπειες που έχει. Το βάρος της παράδοσης... [[Υπό την παραπάνω έννοια, η "αναίρεση" δεν είναι τίποτε άλλο από ενδεικτικό, όχι σημείο αλλοίωσης, αφού δεν αλλοιώνει το όνομα. Μας δείχνει ότι η νότα που συνοδεύει είναι φυσική, έχει αλγεβρικό άθροισμα 0 στα σημεία αλλοιώσεως. Φυσικά, αργότερα στις κλίμακες θα δούμε ότι η αναίρεση μπορεί στην πραγματικότητα να είναι σημείο αλλοιώσεως, εφόσον το φυσικό περιβάλλον της κλίμακας επιβάλει διέσεις ή υφέσεις εξ αρχής. Παρακάτω αυτά...]]
  12. Σας ευχαριστώ! Ελπίζω να σας φανεί χρήσιμο. Λέω να βάλω σε αυτό το thread κάποια πραγματάκια που ίσως βοηθήσουν τους μουσικούς σε ό,τι έχει να κάνει με θεωρία και εφαρμογή αυτής σε ό,τι μουσική ή στυλ παίζουν. Γενικά απλά πράγματα, αλλά που αν τα έχει κανείς στη διάθεσή του βοηθιέται σημαντικά.
  13. Στο thread "γλωσσάρι για διαστήματα - Κλίμακες" θα γράψω μία σχετικά οργανωμένη απάντηση στο ερώτημά σου. Ελπίζω να σε βοηθήσει...
  14. Οι πρώτες κλίμακες του μουσικού που αγαπά τη jazz... Οι κλίμακες είναι ένα από τα αγκάθια της σύγχρονης jazz διδακτικής. Οι περισσότεροι τα έχουν ανάγει σε ιερό δισκοπότηρο του αυτοσχεδιασμού, λαθεμένα κατά τη γνώμη μου. Άλλοι πάλι, μάλλον αντιδρώντας στους πρώτους, τις υποβαθμίζουν περισσότερο από όσο χρειάζεται. Η πραγματικότητα είναι μάλλον κάπου στη μέση. Η bebop έχει να κάνει κάπως περισσότερο με chord tones, arpeggios, και όλα τα είδη αντιστικτικών φθόγγων σε μία αρμονία κατά βάσην αποτελούμενη από στιβαγμένες 3ες από ότι έχει να κάνει με κλίμακες. Επίσης, οι μεμονωμένες συγχορδίες πολλές φορές ξεφεύγουν από το στενό πλαίσιο της κλίμακας, με όλες τις δυνατότητες επεκτάσεων και αλλοιώσεων που μπορούν να έχουν. Παρόλα αυτά, η σημασία των κλιμάκων σε ότι έχει να κάνει με κάποιες αρμονικές συνδέσεις, μελωδικά περάσματα, καθώς βέβαια και σαν "δεξαμενές από νότες" για κάπως πιο "modal" θεώρηση των πραγμάτων, είναι αδιαμφισβήτητη. Για αυτό το λόγο, θεωρώ καλό να απαριθμήσω το "bare minimum" των κλιμάκων που πρέπει να κατέχει ο σύγχρονος μουσικός που ασχολείται με πράγματα σχετικά με jazz. Αυτές είναι οι εξής: Κλίμακες χωρίς τριημητόνιο: Μείζων [Major]: 7 τρόποι. Μελωδική Ελάσσων [Melodic minor] (ανεβοκατεβαίνει ίδια) : 7 τρόποι Ελαττωμένη Κλίμακα ή Τόνος - Ημιτόνιο [Diminished Scale ή Whole step - Half Step ή Whole - Half] : 2 τρόποι Ολοτονική [Wholetone] : 1 τρόπος Κλίμακες με τριημητόνιο: Αρμονική Μείζων [Harmonic Major]: 7 τρόποι Αρμονική Ελάσσων [Harmonic minor]: 7 τρόποι Aυξημένη κλίμακα ή Τριημιτόνιο - Ημιτόνιο [Augmented Scale ή trisemitone - half step ή 3 half steps - one half step]: 2 τρόποι Αυτές οι 7 κλίμακες, μαζί με τους τρόπους τους, φτιάχνουν ένα σύνολο από 33 τρόπους, που καλό είναι ο jazz μουσικός να ξέρει από κάθε τονικότητα. Τι κοινό έχουν αυτές οι 7 κλίμακες; Είναι λίγο δύσκολο να το δει κανείς, αλλά είναι πολύ συναρπαστικό: Οι 7 αυτές κλίμακες είναι τα μεγιστικά υποσύνολα της χρωματικής κλίμακας που δεν περιλαμβάνουν χρωματικό cluster*. [* Χρωματικό cluster: δύο ή περισσότερα διαδοχικά ημιτόνια, π.χ. Ντο-Ντο#-Ρε, Ρε#-Μι-Φα-Σολb κτλ.] Με άλλα λόγια: καμία από αυτές δεν είναι υποσύνολο κάποιας άλλης από αυτές, και επίσης αν ένα υποσύνολο της χρωματικής κλίμακας δεν έχει χρωματικό cluster, τότε είτε είναι υποσύνολο μίας από αυτές, είτε συμπίπτει με μία από αυτές. Δεδομένου ότι αυτές είναι οι πιο στάνταρ κλίμακες στα πιο "προηγμένα" βιβλία αυτοσχεδιασμού, εδώ έχουμε μία περίπτωση που η επιστήμη και το αισθητήριο της τέχνης συμπίπτουν περίφημα! Για τα παρακάτω: C = Nτο, D = Ρε, E = Μι, F = Φα, G = Σολ, A = Λα, B = Σι, οπότε π.χ. C D E F# G# A B = Ντο Ρε Μι Φα# Σολ# Λα Σι Οι παραπάνω κλίμακες αναλυτικά με τους τρόπους τους: A) Χωρίς τριημητόνιο: Μajor: Ionian : 1 2 3 4 5 6 7 (C D E F G A B), σε 3ες: 1 3 5 7 | 9 11 13 = I Maj7 (9,11,13) ή Ι Μ13 (C E G B | D F A) Dorian: 1 2 b3 4 5 6 b7 (D E F G A B C, C D Eb F G A Bb από C), σε 3ες: 1 b3 5 b7 | 9 11 13 = Ι m7 (9,11,13) ή Ιm13 (D F A C | E G B, C Eb G Bb | D F A από C) Phrygian: 1 b2 b3 4 5 b6 b7 (E F G A B C D, C Db Eb F G Ab Bb από C), σε 3ες: 1 b3 5 b7 | b9 11 b13 = I m7 (b9,11,b13) ή Im11b9b13 (E G B D | F A C, C Eb G Bb | Db F Ab από C) Lydian: 1 2 3 #4 5 6 7 (F G A B C D E, C D E F# G A B από C), σε 3ες: 1 3 5 7 | 9 #11 13 = I Maj7(9,#11,13) = I M13#11 (F A C E | G B D, C E G B | D F# A από C) Myxolydian: 1 2 3 4 5 6 b7 (G A B C D E F, C D E F G A Bb από C), σε 3ες: 1 3 5 b7 | 9 11 13 = Ι 7 (9,11,13) = Ι 13 [ή I 13(11) μια που η 11η δεν εννοείται απαραίτητα σε συγχορδίες με Μεγάλη 3η] (G B D F | A C E, C E G Bb | D F A από C) Aeolian: 1 2 b3 4 5 b6 b7 (A B C D E F G, C D Eb F G Ab Bb από C), σε 3ες: 1 b3 5 b7 | 9 11 b13 = Ι m7(9,11,b13) = Im11b13 (A C E G | B D F, C Eb G Bb | D F Ab από C) Locrian: 1 b2 b3 4 b5 b6 b7 (B C D E F G A, C Db Eb F Gb Ab Bb από C), σε 3ες: 1 b3 b5 b7 | b9 11 b13 = Ι m7b5(b9,11,b13) = I m11b5b13b9 = I mb13b5b9 (B D F A | C E G, C Eb Gb Bb | Db F Ab από C) Melodic Minor: Melodic minor: 1 2 b3 4 5 6 7 (C D Eb F G A B), σε 3ες: 1 b3 5 7 | 9 11 13 = Ι m/M7 (9,11,13) ή Ιm/M13 (C Eb G Bb | D F A) Phrygian Natural 6: 1 b2 b3 4 5 6 b7 (D Eb F G A B, C Db Eb F G A Bb από C), σε 3ες: 1 b3 5 b7 | b9 11 13 = I m7 (b9,11,13) ή Im13b9 (D F A C | Eb G B, C Eb G Bb | Db F A από C) Lydian Augmented, ή Lydian #5: 1 2 3 #4 #5 6 7 (Eb F G A B C D E, C D E F# G# A B από C), σε 3ες: 1 3 #5 7 | 9 #11 13 = I Maj7#5(9,#11,13) = I M13+ #11 (Εb G B D | F A C, C E G# B | D F# A από C) Lydian dominant ή Lydian b7: 1 2 3 #4 5 6 b7 (F G A B C D Eb, C D E F# G A Bb από C), σε 3ες: 1 3 5 b7 | 9 #11 13 = I 7(9,#11,13) = I 13#11 (F A C Eb | G B D, C E G Bb | D F# A από C) Myxolydian b6: 1 2 3 4 5 b6 b7 (G A B C D Eb F, C D E F G Ab Bb από C), σε 3ες: 1 3 5 b7 | 9 11 b13 = Ι 7 (9,11,b13) = Ι 11b13 (G B D F | A C Eb, C E G Bb | D F Ab από C) Half Diminished ή Locrian natural 2: 1 2 b3 4 b5 b6 b7 (A B C D Eb F G , C D Eb F Gb Ab Bb από C), σε 3ες: 1 b3 b5 b7 | 9 11 b13 = Ι m7b5(9,11,b13) = I m11b5b13 = I mb13b5 (A C Eb G | B D F, C Eb Gb Bb | D F Ab από C) Altered ή Super Locrian: 1 b2 b3 b4 b5 b6 b7 (B C D Eb F G A, C Db Eb Fb Gb Ab Bb από C). Aυτή, ενώ βγάζει m7b5 ως βασική τετράδα, στην πράξη χρησιμοποιείται αλλιώς: 1 b2 #2 3 #4/b5 #5/b6 b7 (C Db D# E Gb/F# G#/Ab Bb από C), δηλαδή η 1, 3 και b7 μιας κανονικής συγχορδίας 7ης, μαζί με μικρή και αυξημένη 9η και τις δύο αλλοιώσεις της 5ης. Εναλλακτικά, #11 και b13. Σε κάθε περίπτωση, είναι η κλίμακα επιλογής για οτιδήποτε dominant έχει τις συγκεκριμένες βαθμίδες με b13. Για αυτό δεν δίνεται σαν συγχορδία σε ανάπτυγμα 3ης, διότι αυτή είναι επέκταση του half diminished με ελαττωμένη 4η, και η συγκεκριμένη κλίμακα δεν πολυχρησιμοποιείται έτσι. Diminished: W - H (Whole-Half ή Whole Step - Half Step): 1 2 b3 4 b5 #5 6 7 (C D Eb F Gb G# A B). Μία ωραία ανάλυσή της είναι σαν δύο συγχορδίες ελαττωμένης 7ης μία Μεγάλη 7η διαφορά η μία από την άλλη, π.χ. Bo7/Cο7: C Eb Gb A | B D F Ab. (Επίσης φυσικά, έναν τόνο, Καθαρή 4η ή μικρή 6η πάνω η μία από την άλλη! Αν κουνηθεί μία ελαττωμένη τετράφωνη συγχορδία κατά 3ες μικρές και τα παράγωγά τους διαστήματα, όπως κάνουμε εδώ στην επάνω ελαττωμένη, δεν αλλάζει.) Σημαντική ιδιότητα: ό,τι παίζεται μέσα στην κλίμακα, μεταφέρεται και υπερτίθεται ανά 3ες μικρές, τρίτονα και 6ες μεγάλες παντού ανά πάσα στιγμή. H - W (Half Step - Whole Step): 1 b2 #2 3 #4 5 6 b7 (C Db D# E F# G A Bb). Όμοια ιδιότητα με τις μεταφορές και υπερθέσεις σε 3ες μικρές, τρίτονα και 6ες μεγάλες. Η κλίμακα επιλογής για dominant με b/#9 και 13. Wholetone: Wholetone: 1 2 3 #4/b5 #5/b6 b7 (C D E F#/Gb G#/Ab Bb). Μοναδική από τις απλές τριάδες που χωράει εδώ είναι η αυξημένη. Η ίδια η κλίμακα μπορεί να αναλυθεί σαν δύο αυξημένες συγχορδίες σε απόσταση μικρής 7ης, π.χ. Bb+/C+, ή τόνου, ή τριτόνου κτλ. Tα πάντα εδώ μεταφέρονται και υπερτίθενται κατά όλα τα σύμπλοκα από τόνους όπως τόνο, 3ες Μεγάλες, Τρίτονα, 6ες μικρές, 7ες μικρές κτλ. Τα βιβλία συνήθως την αναφέρουν σαν καλή επιλογή για τις συγχορδίες 7#5, αλλά στην πράξη έχει πολύ ισχυρό και χαρακτηριστικό χρώμα και χρησιμοποιείται μόνον όταν θέλουμε το συγκεκριμένο χρώμα. Β) Με τριημητόνιο: Harmonic Major: Harmonic Major ή Ionian b6 : 1 2 3 4 5 b6 7 (C D E F G Ab B), σε 3ες: 1 3 5 7 | 9 11 b13 = I Maj7 (9,11,b13) ή Ι Μb13 (C E G B | D F bA). Μία από τις πιο όμορφες κλίμακες, χρησιμοποιήθηκε πολύ στο ρώσσικο ρομαντισμό. Ωραία ανάλυση: Do7/C: C E G | D F Ab B Half Diminished natural 6 ή Dorian b5: 1 2 b3 4 b5 6 b7 (D E F G Ab B C, C D Eb F Gb A Bb από C), σε 3ες: 1 b3 b5 b7 | 9 11 13 = Ι m7b5 (9,11,13) ή Ιm13b5 (D F Ab C | E G B, C Eb Gb Bb | D F A από C) Small Flamenco ή Super Locrian natural 5 ή Phrygian b4: 1 b2 b3 b4 5 b6 b7 (Ε F G Ab B C D, C Db Eb Fb G Ab Bb από C). Όπως και η Super Locrian, στην πράξη χρησιμοποιείται αλλιώς: 1 b2 #2 3 #4 5 b7 (C Db D# E F# G Bb από C), δηλαδή η 1, 3, 5 και b7 μιας κανονικής συγχορδίας 7ης, μαζί με μικρή και αυξημένη 9η και αυξημένη 11η. Σε καθοδικά περάσματα η #11 μπορεί να ερμηνευθεί σαν b5 -> b4 -> b3 -> b2 -> 1. Melodic minor #4: 1 2 b3 #4 5 6 7 (F G Ab B C D E, C D Eb F# G A B), σε 3ες: 1 b3 5 7 | 9 #11 13 = Ι m/M7 (9,#11,13) ή Ιm/M13 (F Ab C E | G B D, C Eb G B | D F# A από C). Υπέροχος τρόπος, που περιλαμβάνει και το συνδυασμό δύο ελάσσονων συγχορδιών σε απόσταση Μεγάλης 7ης, π.χ. Bm/Cm. Phrygian Major natural 6 ή Myxolydian b2: 1 b2 3 4 5 6 b7 (G Ab B C D E F, C Db E F G A Bb από C), σε 3ες: 1 3 5 b7 | b9 11 13 = Ι 7 (b9,11,13) = Ι 13b9(11)) (G B D F | Ab C E, C E G Bb | Db F A από C) Lydian Augmented #2: 1 #2 3 #4 #5 6 7 (Ab B C D E F G, C D# E F# G# A B από C), σε 3ες: 1 3 #5 7 | #9 #11 13 = I Maj7#5(#9,#11,13) = I M13+ #9#11 (Ab C E G | B D F, C E G# B | D# F# A από C) Harmonic Diminished natural 4 ή Locrian bb7: 1 b2 b3 4 b5 b6 bb7 (B C D E F G Ab, C Db Eb F Gb Ab Bbb από C). Μία υπέροχη κλίμακα για τις ελαττωμένες συγχορδίες, χρησιμοποιήθηκε π.χ. από τον Rimsky-Korsakoff στο Song Of India. Δεν πολυχρησιμοποιείται σαν ανάπτυγμα 3ης, για αυτό και δεν δίνεται. Harmonic minor: Harmonic minor: 1 2 b3 4 5 b6 7 (C D Eb F G Ab B), σε 3ες: 1 b3 5 7 | 9 11 b13 = Ι m/M7 (9,11,b13) ή Ιm/Mb13 (C Eb G Bb | D F bA) Locrian natural 6: 1 b2 b3 4 b5 6 b7 (D Eb F G Ab B C, C Db Eb F Gb A Bb από C), σε 3ες: 1 b3 b5 b7 | b9 11 13 = Ι m7b5(b9,11,13) = I m13b5b9 = I m13b5b9 (D F Ab C | Eb G B, C Eb Gb Bb | Db F A από C) Ionian augmented ή Ionian #5: 1 2 3 4 #5 6 7 (Eb F G Ab B C D E, C D E F G# A B από C), σε 3ες: 1 3 #5 7 | 9 11 13 = I Maj7#5(9,11,13) = I M13+ (Εb G B D | F Ab C, C E G# B | D F A από C) Dorian #4 ή Romanian: 1 2 b3 #4 5 6 b7 (C D Eb F# G A Bb), σε 3ες: 1 b3 5 b7 | 9 #11 13 = Ι m7 (9,#11,13) ή Ι m13#11 (C Eb G Bb | D F# A). Phrygian Major ή Phrygian Dominant: 1 b2 3 4 5 b6 b7 (G Ab B C D Eb F, C Db E F G Ab Bb από C), σε 3ες: 1 3 5 b7 | b9 11 b13 = Ι 7 (b9,11,b13) = Ι 11b13b9 (G B D F | Ab C Eb, C E G Bb | Db F Ab από C) Lydian #2: 1 #2 3 #4 5 6 7 (Ab B C D Eb F G, C D# E F# G A B από C), σε 3ες: 1 3 5 7 | #9 #11 13 = I Maj7(#9,#11,13) = I M13#9#11 (Ab C Eb G | B D F, C E G B | D# F# A από C) Harmonic Diminished: 1 b2 b3 b4 b5 b6 bb7 (B C D Eb F G Ab, C Db Eb Fb Gb Ab Bbb από C). H κατεξοχήν κλίμακα για τις ελαττωμένες συγχορδίες επι κλασσικισμού, χρησιμοποιήθηκε από τον Bach και πέρα συνέχεια. Δεν πολυχρησιμοποιείται σαν ανάπτυγμα 3ης, για αυτό και δεν δίνεται. Augmented Scale: Trisemitone - Half Step: 1 #2 3 5 b6 7 (C D# E G Ab B). Πολύ όμορφη κλίμακα, που μπορεί κανείς να τη δει και σαν δύο αυξημένες συγχορδίες που απέχουν Μεγάλη 7η, π.χ. B+/C+: C E G# | B D# G. Επίσης: 1 3 5 7 | #9 b13. Half Step - Trisemitone: 1 b2 3 4 #5 6 (C Db E F G# A). Αυτές είναι όλες. Μάθετέ τις όλες σε όλες τις τονικότητες, όπως τις κλίμακες που μελετούσατε στο Ωδείο. Εξερευνήστε τις αρμονικά, αναλύστε τις και μαθαίνετε να ξεχωρίζετε τα αρμονικά και μελωδικά τους χρώματα. Καλή τύχη!
  15. Γλωσσάρι για τα διαστήματα με jazz συμβολισμό Ο πιο συνηθισμένος jazz συμβολισμός των διαστημάτων είναι ο εξής: Κύρια διαστήματα (1, 4, 5 και οι οκτάβες τους 8, 11, 12, 15 κτλ.): 1 (8, 15), 4 (11), 5 (12): Καθαρή 1η (ή 8η, 15η), Καθαρή 4η (ή 11η) και Καθαρή 5η (ή 12η) b1 (b8, b15), b4 (b11), b5 (b12) : Ελαττωμένη 1η (ή 8η ή 15η), ελαττωμένη 4η (ή 11η), ελαττωμένη 5η (ή 12η) #1 (#8, #15), #4 (#11), #5 (#12) : Αυξημένη 1η (ή 8η ή 15η), αυξημένη 4η (ή 11η), αυξημένη 5η (ή 12η). Δευτερεύοντα διαστήματα (2, 3, 6, 7 και οι οκτάβες τους 9, 10, 13, 14 κτλ.): 2 (9), 3 (10), 6 (13), 7 (14): Μεγάλη 2α (ή 9η), Μεγάλη 3η (ή 10η), Μεγάλη 6η (ή 13η), Μεγάλη 7η (ή 14η) b2 (b9), b3 (b10), b6 (b13), b7 (b14): μικρή 2α (ή 9η), μικρή 3η (ή 10η), μικρή 6η (ή 13η), μικρή 7η (ή 14η) bb2 (bb9), bb3 (bb10), bb6 (bb13), bb7 (bb14): ελαττωμένη 2α (ή 9η), ελαττωμένη 3η (ή 10η), ελαττωμένη 6η (ή 13η), ελαττωμένη 7η (ή 14η) #2 (#9), #3 (#10), #6 (#13), #7 (#14): Αυξημένη 2α (ή 9η), Αυξημένη 3η (ή 10η), Αυξημένη 6η (ή 13η), Αυξημένη 7η (ή 14η) Άρα: Σκέτος αριθμός σημαίνει: Καθαρό κύριο διάστημα (1,4,5 και οι οκτάβες τους) ή Μεγάλο δευτερεύον διάστημα (2,3,6,7 και οι οκτάβες τους). "#" σημαίνει πάντοτε αυξημένο διάστημα. Μερικές φορές αντί για # κάποιοι βάζουν το σύμβολο "+", αλλά δεν είναι στάνταρ, καθώς για κάποιους άλλους το "+" σχετίζεται μόνο με την αυξημένη 5η, και όχι με κάθε αυξημένο διάστημα. Π.χ. 7#5#9 = 7+5+9 για κάποιους = 7+ (#9) για κάποιους άλλους. Στο τελευταίο, το "+" σημαίνει "#5". Αυτό για να είστε προετοιμασμένοι... "b" σημαίνει ελαττωμένο Κύριο διάστημα (1, 4, 5 και οι οκτάβες τους) ή μικρό δευτερεύον διάστημα (2, 3, 6, 7 και οι οκτάβες τους). "bb" σημαίνει ελαττωμένο δευτερεύον διάστημα (2, 3, 6, 7 και οι οκτάβες τους). Αν δείτε το σύμβολο "bb" σε κύριο διάστημα, τότε το διάστημα αυτό είναι δύο φορές ελαττωμένο, ή δισελαττωμένο. Αντίστοιχα, το σύμβολο "x" (x = ##) μπροστά από οποιοδήποτε διάστημα, αυτό θα είναι δισαυξημένο, κτλ. Αυτά θα τα συναντήσετε σχετικά σπάνια... Αν θέλετε περαιτέρω εξάσκηση στα διαστήματα, πηγαίνετε εδώ: http://samiamiris.com/index.php/el/-/17-theory/19-intervals Κρατήστε καμιά ώρα από το πρόγραμμά σας και κάνετε το τεστ. Αν δεν μπορείτε να βρείτε πολλά διαστήματα, σημαίνει ότι θέλετε εξάσκηση. Η τέλεια γνώση των διαστημάτων είναι από τα πιο σημαντικά δώρα που μπορείτε να κάνετε στον εαυτό σας ως μουσικοί, οπότε μην το αμελήσετε!
  16. Ευχαριστώ πολύ όλους για τα καλά σας λόγια. Ναι, φυσικά έχετε δίκιο για την 545, το είχα ξεχάσει εντελώς...
  17. Σας ευχαριστώ όλους για τα καλά σας λόγια. Στην εισαγωγή του κομματιού κυρίως υπάρχουν επιρροές από συνθέτες και αυτοσχεδιαστές της παλιάς jazz, προ-bebop, όπως οι J.P. Johnson, Fats Waller ή, στο βαθμό που γίνεται βέβαια, Art Tatum., καθώς και μία σειρά ανθρώπων του Boogie Woogie, όπως οι Clarence Smith, Albert Ammons, Meade-Lux Lewis, Pete Johnson. Στον πολυρυθμικό χειρισμό πάμε πιο πολύ σε Marcus Roberts και Jason Moran, αλλά στα boogie και stride που παίζουν ενίοτε. Στο σόλο σε αυτό το κομμάτι, περισσότερο προς Bud Powell, Jarrett, Oscar Peteson, Red Garland και John Coltrane της εποχής "sheets of sound" θα έλεγα ως πηγές. Στο latin section πιο πολύ Rubalcaba, Camilo και κάποιο Corea και Hancock. Τώρα για κλασσικούς συνθέτες ειδικά σε αυτό το κομμάτι, δεν μου έρχεται κάτι στο νου. Σε άλλα στάνταρ. Αλλά σε αυτό το κομμάτι με το παρόν section, δεν σκέφτομαι κάτι. Πιθανώς οι στάνταρ μου επιρροές ίσως να ενυπάρχουν σε ό,τι κάνω: Bach, Scriabin και μετα-Σκριαμπινικοί, Messiaen, Ligeti, Lutoslawski, Bartok, Schoenberg, Rautavaara κτλ αλλά δεν νομίζω να φαίνονται σε αυτό το κομμάτι πολύ, γιατί είναι κομμάτι πιο jazz oriented...
  18. Τhanx, θα το μεταβιβάσω και στα παιδιά!
  19. Alavastro, 4 Oct. 2012 Αντώνης Λαδόπουλος: Σαξόφωνο Περικλής Τριβόλης: Κοντραμπάσο Γιώργος Μούρτος: Τύμπανα Ο υποφαινόμενος: πιάνο Το κομμάτι είναι δικό μου, και λέγεται "Don't play it again Sam!". Jazz Quartet: Don't play it again Sam!.wmv
  20. Φυσικά! Και ευχαριστούμε!
  21. Μην το ξεχάσω, τo ίδιο κομμάτι υπάρχει και με το ντουέτο, Phos Duo, στο αντίστοιχο tab λίγο παρακάτω νομίζω. Μάλιστα το είχαμε παίξει με ακριβώς αυτήν τη βερσιόν στη Στέγη το Μάϊο με Marcus Stockhausen, Arild Andersen και Patrice Heral, η οποία δυστυχώς δεν ηχογραφήθηκε... Σε εκείνη τη βερσιόν, που είναι και από άλλο τόνο από αυτήν εδώ, σόλο κάνει ο Αντώνης, και είναι τόσο σούπερ που δεν έχω λόγο να κάνω εγώ. Απλώς συνοδεύω...
  22. Ευχαριστώ πολύ εκ μέρους όλων!!!
  23. Τα τύμπανα είναι σε κάποια είδη όργανο συνοδείας, σε κάποια είδη όργανο σολιστικό και σε κάποια είδη όργανο σύνθεσης και μουσικής συνομιλίας στο ίδιο επίπεδο με τον μελωδικό σολίστα, όπως π.χ. σε μεγάλο μέρος της μοντέρνας jazz. Δεν υπάρχει καθορισμένος ρόλος για τα τύμπανα πλέον, μπορούν να είναι όλα από τα προηγούμενα. Όλα έχουν να κάνουν με το στυλ. Και εδώ είναι η γνωστή ρήση περί ορέξεως...
×
×
  • Δημοσιεύστε κάτι...

Τα cookies

Τοποθετήθηκαν cookies στην συσκευή σας για να είναι πιο εύκολη η περιήγηση στην σελίδα. Μπορείτε να τα ρυθμίσετε, διαφορετικά θεωρούμε πως είναι OK να συνεχίσετε. Πολιτική απορρήτου